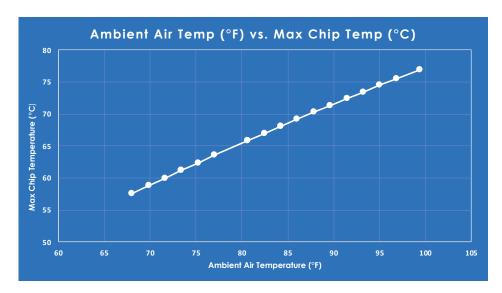
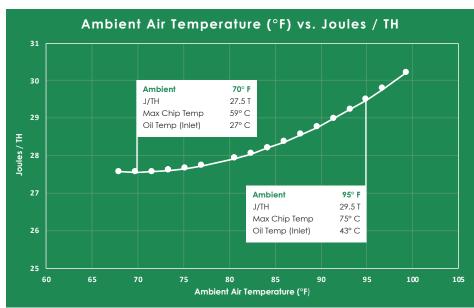


Engineered Immersion Cooling Systems

Our proprietary software monitoring system displays a test tank being cooled by a heat exchanger designed for **90F ambient** at **125KW** load.

Despite the (intentionally) undersized heat exchanger, we are able to keep the maximum chip temperature below the critical | shutoff temperature far higher than the system design temperature; this system will outperform its design on hot days.

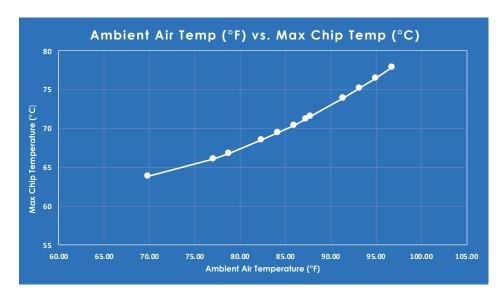

All miners in the test tank have maximum chip and board temperatures within 2-3 degrees of each other at all ambient temperatures, due to our well designed flow control system.

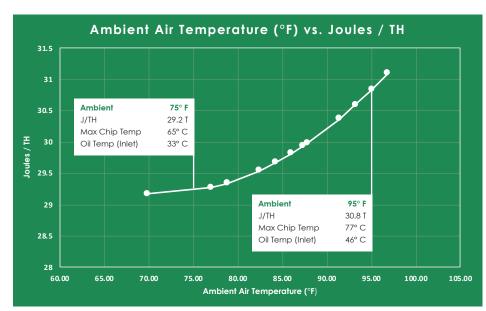

HASH	BOARD TEMP	CHIP TEMP	0	CHIP TEMP	BOARD TEMP	HASI
	INLET OUTLET	INLET OUTLET		OUTLET INLET	OUTLET INLET	
100 T	45° 44° 53° 53	60 59 68 68	1	66 ° 64 ° 59 ° 59 °	51 99 44 44	101
	45 43 52 53	60 58 67 68	2	65 64 59 59 59	50 49 44 44	
	46 44 52 53	61 · 59 · 67 · 68 ·	3	65 ° 64 ° 59 ° 59 °	50 * 49 * 44 * 44 *	
83 T	43 42 52 53	58 57 67 68	1	66 · 65 · 58 · 59 ·	51 50 43 44	103
	43 43 53 55	58 58 68 70	2	65 · 64 · 59 · 58 ·	50 49 44 43	
	43 : 43 : 53 : 54	58: 58: 68: 69:	3	65 · 64 · 59 · 59 ·	50 : 49 : 44 : 44 :	
102 T	44 44 52 52	59 59 67 67	1	67 · 66 · 56 · 58 ·	52 51 41 43	106
	45 44 51 52	60 59 66 67	2	66 66 57 58 S	51 * 51 * 42 * 43 *	_
	44 : 44 : 51 : 53	59: 59: 66: 68:	3	67 65 57 58	52 50 42 43	
103 T	44 44 52 53	59 59 67 68	1	67 65 59 60	52 50 44 45	102
	45 45 52 52	60 60 67 67	2	66 65 60 60°	51 50 45 45	
	45 43 53 53	60 58 68 68	3	66 65 59 60	51 ° 50 ° 44 ° 45 °	
102⊤	45: 44: 52: 52	60: 59: 67: 67:	1	67 · 66 · 60 · 60 ·	52 * 51 * 45 * 45 *	101
102	46 44 52 52	61 59 67 67	2	66 65 59 60	51 50 44 45	
	45 45 52 52	60 60 67 67	3	66 ° 66 ° 60 ° 61 °	51 : 51 : 45 : 46 :	
102 ⊤	44 : 43 : 51 : 52	59 58 66 67	1	67 · 66 · 60 · 60 ·	52 * 51 * 45 * 45 *	104
102 1	45 44 51 51	60 59 66 66	2	67 66 60 60	52 51 45 45	104
	45 44 51 52	60 59 66 67	3	67 66 60 60	52 51 45 45	
102⊤	45 44 52 53	60 · 59 · 67 · 68 ·	1	66 · 65 · 58 · 59 ·	51 · 50 · 43 · 44 ·	102
	46 44 51 52	61 59 66 67	2	66 65 59 60	51 50 44 45	
	46 44 52 53	61 59 67 68	3	66 65 59 60	51 * 50 * 44 * 45 *	
101⊤	44 : 43 : 50 : 51	59 58 65 66	1	66 · 65 · 59 · 60 ·	51 · 50 · 44 · 45 ·	101
	45 45 50 51	60 60 65 66	2	66 65 59 60	51 50 44 45	_
	45 : 44 : 51 : 51	60 : 59 : 66 : 66 :	3	66 65 59 60	51 50 44 45	
100 T	44 · 43 · 51 · 51	59 : 58 : 66 : 66 :	1	67 · 66 · 59 · 60 ·	52 · 51 · 44 · 45 ·	98 ⊤
	45 44 52 52	60 59 67 67	2	67 66 60 60	52 51 45 45	
	45: 44: 51: 51	60 : 59 : 66 : 66 :	3	67 ° 66 ° 60 ° 60 °	52 * 51 * 45 * 45 *	
100 ⊤	45 44 51 52	60 59 66 67	1	67 ° 66 ° 59 ° 59 °	52 51 44 44	104
100	45 44 51 51	60 59 66 66	2	66 66 59 59	51 51 44 44	104
	46 45 52 52	61 60 67 67	3	67 65 59 60	52 50 44 45	
	52 52	87 87	,	30 00		

Heat Exchanger Immersion Tank Performance 125KW @ 90F with a 47°C Tank Inlet 26 \$19 Series 96, 104, 110 Models 100TH Preset

Our proprietary software monitoring system displays a test tank being cooled by a heat exchanger designed for **90F ambient** at **125KW** load.

Despite the (intentionally) undersized heat exchanger, we are able to keep the maximum chip temperature below the critical | shutoff temperature far higher than the system design temperature; this system will outperform its design on hot days.


All miners in the test tank have maximum chip and board temperatures within 2-3 degrees of each other at all ambient temperatures, due to our well designed flow control system.

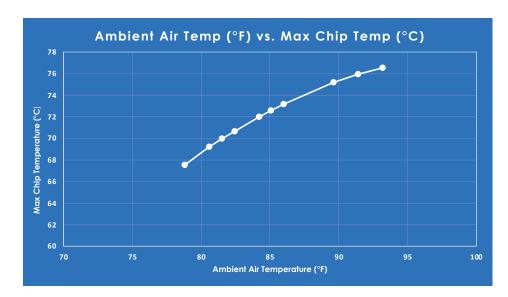

HASH	BOARD TEMP CHIP TEMP			CHIP TEMP	BOARD TEMP	HAS
	INLET OUTLET	INLET OUTLET		OUTLET INLET	OUTLET INLET	
112 T	41 40 50 5	56° 55° 65° 66°	1	64° 63° 53° 54°	49 48 38 39	112
	41 40 51 5	2: 56: 55: 66: 67:	2	65 ° 64 ° 54 ° 55 °	50 49 39 40	
	41: 41: 51: 5	3 · 56 · 56 · 66 · 68 ·	3	66 · 64 · 53 · 54 ·	51 * 49 * 38 * 39 *	
113 T	43 41 52 5	58 56 67 68	1	64 63 53 54	49 48 38 39	110 1
110	43 42 53 5		2	65 64 54 55	50 49 39 40	-
	43 42 53 5		3	66 · 64 · 53 · 54 ·	51 * 49 * 38 * 39 *	
		50. 55. 05. 00.		05. 04. 54. 55.	50 * 49 * 39 * 40 *	
111 T	41 40 50 5		1 2	65 · 64 · 54 · 55 · 66 · 65 · 55 · 56 ·	50 * 49 * 39 * 40 *	110
	41 40 51 5		3	67 65 54 55	52 50 39 40	
						_
111 T	41 40 50 5	56 55 65 66	1	65 64 54 55	50 49 39 40	109
	41 40 51 5		2	66 ° 65 ° 55 ° 56 °	51 * 50 * 40 * 41 *	
	41 41 51 5	56° 56° 66° 68°	3	67° 65° 54° 55°	52 * 50 * 39 * 40 *	
111 T	41: 40: 50: 5	56 55 65 66	1	66 · 65 · 55 · 56 ·	51 ° 50 ° 40 ° 41 °	112
	41 40 51 5	2 56 55 66 67	2	67 ° 66 ° 55 ° 56 °	52 51 40 41	
	41 41 51 5	56 56 66 68	3	68 ° 66 ° 56 ° 56 °	53 * 51 * 41 * 41 *	
110 T	40 : 39 : 49 : 5	55 54 64 65	1	66 · 65 · 55 · 56 ·	51 ° 50 ° 40 ° 41 °	113
	41 40 50 5	56 55 65 66	2	67 66 55 56 56	52 * 51 * 40 * 41 *	
	40 39 50 5	2 55 54 65 67	3	68 ° 66 ° 56 ° 56 °	53 * 51 * 41 * 41 *	
112 T	41° 40° 50° 5	56° 55° 65° 66°	1	65° 64° 54° 55°	50 * 49 * 39 * 40 *	110
	41 40 51 5	2 56 55 66 67	2	66 · 65 · 55 · 56 ·	51 * 50 * 40 * 41 *	_
	41 41 51 5	3 · 56 · 56 · 66 · 68 ·	3	67 · 65 · 54 · 55 ·	52 * 50 * 39 * 40 *	
111 T	40 : 39 : 49 : 5	55 54 64 65	1	65 64 54 55	50 : 49 : 39 : 40 :	111
	41 40 50 5		2	66 65 55 56	51 50 40 41	-
	40 : 39 : 50 : 5		3	67 65 54 55	52 50 39 40	
440-						400
110 T	40 : 39 : 49 : 5		1	65 64 54 55	50 : 49 : 39 : 40 :	108
	41 40 50 5		2	66 65 55 56	51 ° 50 ° 40 ° 41 °	
	40 : 39 : 50 : 5	2: 55: 54: 65: 67:	3	67: 65: 54: 55:	52 * 50 * 39 * 40 *	
112 T	40 : 39 : 49 : 5		1	65 ° 64 ° 54 ° 55 °	50 * 49 * 39 * 40 *	111.1
	41 40 50 5		2	66 65 55: 56:	51 * 50 * 40 * 41 *	
	40 39 50 5	55 54 65 67	3	67° 65° 54° 55°	52 * 50 * 39 * 40 *	
444.T	40: 39: 49: 5	55 54 64 65	1	66 65 55 56	51: 50: 40: 41:	112-3

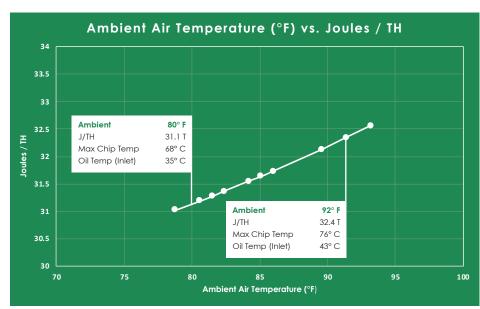
Heat Exchanger Immersion Tank Performance 125KW @ 90F with a 47°C Tank Inlet 26 \$19 Series 96, 104, 110 Models 110TH Preset

Our proprietary software monitoring system displays a test tank being cooled by a heat exchanger designed for **90F ambient** at **125KW** load.

Despite the (intentionally) undersized heat exchanger, we are able to keep the maximum chip temperature below the critical | shutoff temperature far higher than the system design temperature; this system will outperform its design on hot days.

All miners in the test tank have maximum chip and board temperatures within 2-3 degrees of each other at all ambient temperatures, due to our well designed flow control system.


HASH	BOARD	TEMP	CHIP	TEMP	0	CHIP '	TEMP	BOARD TEMP OUTLET INLET	HASH
118⊤	42° 41°	51° 52°	57° 56°	66° 67°	1	65° 64°	54° 55°	50 * 49 * 39 * 40 *	122 T
	42 * 41 *	52 * 54 *	57 * 56 *	67 ° 69 °	2	66 65	55 56	51 50 40 41	
	42 ° 42 °	52 53	57: 57:	67 · 68 ·	3	67 · 65 ·	54° 55°	52° 50° 39° 40°	
118 T	43 * 41 *	52 * 53 *	58 * 56 *	67 68	1	65 · 64 ·	54° 55°	50 49 39 40	121 T
	43 * 42 *	53 * 55 *	58 * 57 *	68 ° 70 °	2	66 · 65 ·	55 56	51 * 50 * 40 * 41 *	
	43 42	53 ° 54 °	58: 57:	68 : 69 :	3	67 : 65 :	54° 55°	52° 50° 39° 40°	
120 T	43 * 41 *	52 * 53 *	58 * 56 *	67 68 9	1	66 ° 65 °	55° 56°	51 * 50 * 40 * 41 *	121 T
	43	53 : 55 :	58 * 57 *	68 ' 70 '	2	67 · 66 ·	55° 56°	52° 51° 40° 41°	
	43 42	53° 54°	58° 57°	68 : 69 :	3	68 · 66 ·	56 56	53 51 41 41	
117 T	42 * 41 *	51 52 52	57° 56°	66 · 67 ·	1	66 ° 65 °	55 56	51 50 40 41	120 T
	42 * 41 *	52 * 54 *	57 * 56 *	67 ° 69 °	2	67 · 66 ·	55° 56°	52° 51° 40° 41°	
	42° 42°	52° 53°	57° 57°	67° 68°	3	68° 66°	56° 56°	53 * 51 * 41 * 41 *	
120 T	42: 41:	51: 52:	57: 56:	66 : 67 :	-1	67: 66:	56° 57°	52 * 51 * 41 * 42 *	119 ⊤
	42 41	52 * 54 *	57 * 56 *	67 69	2	69 67	56: 57:	54° 52° 41° 42°	
	42 42	52 * 53 *	57 * 57 *	67° 68°	3	68° 67°	57: 57:	53 * 52 * 42 * 42 *	
120 ⊤	41 * 40 *	50 * 51 *	56° 55°	65 · 66 ·	1	67 · 66 ·	56: 57:	52 * 51 * 41 * 42 *	122 T
	41 40	51 52	56 55	66 67	2	69 67	56 57	54 52 41 42	
	41 * 41 *	51 * 53 *	56° 56°	66 68	3	68 ° 67 °	57: 57:	53 * 52 * 42 * 42 *	
122 ⊤	42° 41°	51° 52°	57° 56°	66° 67°	1	66° 65°	55: 56:	51 * 50 * 40 * 41 *	120 T
	42 41	52 54	57 56	67 69	2	67 66	55 56	52 * 51 * 40 * 41 *	
	42 * 42 *	52° 53°	57° 57°	67° 68°	3	68° 66°	56 56	53 * 51 * 41 * 41 *	
118 T	41 ° 40 °	50 * 51 *	56° 55°	65 · 66 ·	1	66 ° 65 °	55: 56:	51 * 50 * 40 * 41 *	121 T
	41 40	51 52	56 55	66 67 67	2	67 66	55 56°	52° 51° 40° 41°	
	41 * 41 *	51 · 53 ·	56 · 56 ·	66 · 68 ·	3	68 · 66 ·	56 56	53 * 51 * 41 * 41 *	
119 T	41 * 40 *	50 ° 51 °	56° 55°	65 · 66 ·	1	67 · 66 ·	56: 57:	52 * 51 * 41 * 42 *	121 T
	41 40	51 52	56 55	66 67	2	69 67	56 57°	54° 52° 41° 42°	
	41: 41:	51: 53:	56: 56:	66 : 68 :	3	68 · 67 ·	57 57 6	53 52 42 42	
118 T	42 * 41 *	51 52 52	57 · 56 ·	66 ° 67 °	1	67° 66°	56 57	52 * 51 * 41 * 42 *	122 T
	42 41	52 54	57 56	67 69	2	69 67	56: 57:	54 * 52 * 41 * 42 *	
	42 ° 42 °	52 53	57 57 57	67° 68°	3	68 ° 67 °	57: 57:	53 * 52 * 42 * 42 *	
120 T	41 40	50 * 51 *	56: 55:	65 66		67 66	56: 57:	52: 51: 41: 42:	121.⊤

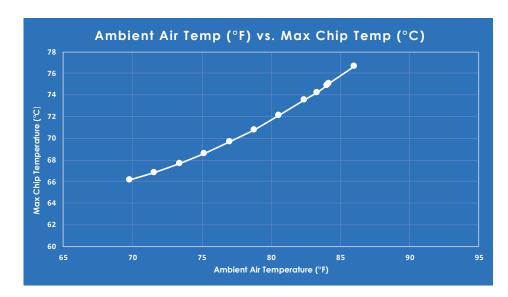


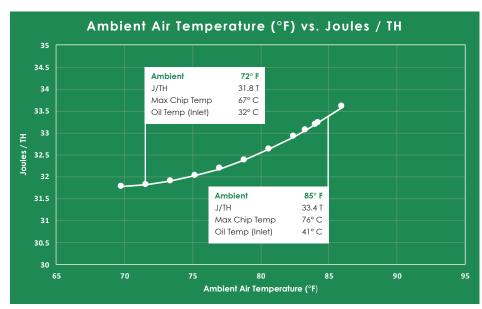
Heat Exchanger Immersion Tank Performance 125KW @ 90F with a 47°C Tank Inlet 26 S19 Series 96, 104, 110 Models

120TH Preset

Our proprietary software monitoring system displays a test tank being cooled by a heat exchanger designed for **90F ambient** at **125KW** load.

Despite the (intentionally) undersized heat exchanger, we are able to keep the maximum chip temperature below the critical | shutoff temperature far higher than the system design temperature; this system will outperform its design on hot days.


All miners in the test tank have maximum chip and board temperatures within 2-3 degrees of each other at all ambient temperatures, due to our well designed flow control system.

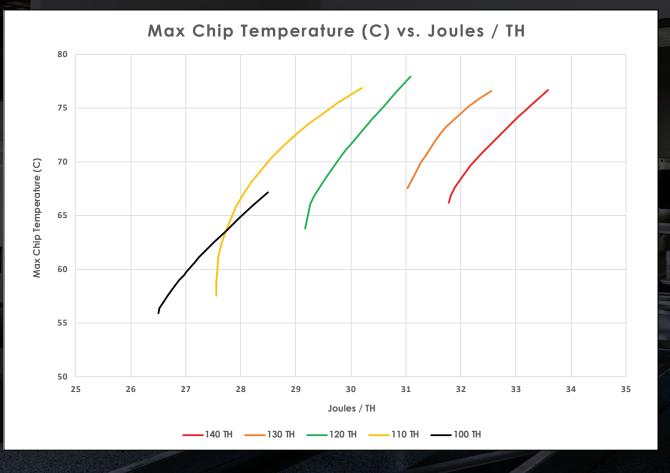

HASH	BOARD TEMP	CHIP TEMP INLET OUTLET	0	CHIP TEMP OUTLET INLET	BOARD TEMP OUTLET INLET	HASI
126 T	43 41 52 53	58 56 67 68	1	66° 65° 55° 56°	51° 50° 40° 41°	130 1
	43 42 53 55	58: 57: 68: 70:	2	67 · 66 · 55 · 56 ·	52 51 40 41	
	43 42 53 54	58 57 68 69	3	68 · 66 · 56 · 56 ·	53 * 51 * 41 * 41 *	
116 T	43 * 41 * 52 * 53	58 56 67 68	1	66 · 65 · 55 · 56 ·	51 ° 50 ° 40 ° 41 °	129 1
	43 42 53 55	58 57 68 70	2	67 ° 66 ° 55 ° 56 °	52 51 40 41	
	43 42 53 54	58: 57: 68: 69:	3	68 · 66 · 56 · 56 ·	53 51 41 41	
125 T	43 * 41 * 52 * 53	58 56 67 68	1	67 · 66 · 56 · 57 ·	52 * 51 * 41 * 42 *	133 1
	43 42 53 55	58 57 68 70	2	69 67 56 57	54 ° 52 ° 41 ° 42 °	
	43 42 53 54	58: 57: 68: 69:	3	68° 67° 57° 57°	53 52 42 42	
126 T	43 41 52 53	58 56 67 68	1	67 · 66 · 56 · 57 ·	52 51 41 42	119 ⊤
	43 42 53 55	58 57 68 70	2	69 ° 67 ° 56 ° 57 °	54° 52° 41° 42°	
	43 42 53 54	58° 57° 68° 69°	3	68° 67° 57° 57°	53 52 42 42	
130 ⊤	43 41 52 53	58: 56: 67: 68:	-1	68 · 67 · 56 · 58 ·	53 52 41 43	129
	43 42 53 55	58 57 68 70	2	70 * 68 * 57 * 58 *	55 * 53 * 42 * 43 *	
	43 42 53 54	58 57 68 69	3	69 68 57 58	54 * 53 * 42 * 43 *	
123 T	42 41 51 52	57: 56: 66: 67:	1	68 ° 67 ° 56 ° 58 °	53 52 41 43	131 1
	42 41 52 54	57' 56' 67' 69'	2	70 68 57 58	55 53 42 43	
	42 42 52 53	57 57 67 68	3	69 68 57 58	54 53 42 43	
129 T	43 41 52 53	58° 56° 67° 68°	1	67° 66° 56° 57°	52 51 41 42	128 1
	43 42 53 55		2	69 67 56 57	54 52 41 42	
	43 42 53 54	58 57 68 69	3	68° 67° 57° 57°	53 * 52 * 42 * 42 *	
127 ⊤	42 41 51 52	57 56 66 67	1	67° 66° 56° 57°	52 51 41 42	132 1
	42 41 52 54	57 56 67 69	2	69 · 67 · 56 · 57 ·	54° 52° 41° 42°	
	42 42 52 53	57: 57: 67: 68:	3	68 67 57 57	53 * 52 * 42 * 42 *	
127 T	42 : 41 : 51 : 52	57: 56: 66: 67:	1	68 · 67 · 56 · 58 ·	53 * 52 * 41 * 43 *	122 1
	42 41 52 54		2	70 68 57 58	55° 53° 42° 43°	
	42 42 52 53	57: 57: 67: 68:	3	69 68 57 58	54 * 53 * 42 * 43 *	
128 T	42 41 51 52	57 56 66 67	1	68° 67° 56° 58°	53 52 41 43	132 1
	42 41 52 54		2	70 68 57 58	55 * 53 * 42 * 43 *	
	42 · 42 · 52 · 53	57° 57° 67° 68°	3	69° 68° 57° 58°	54 * 53 * 42 * 43 *	
120 ⊤	42 : 41 : 51 : 52	57 56 66 67	-1	68 67 56 58	53 52 41 43	131

Heat Exchanger Immersion Tank Performance 125KW @ 90F with a 47°C Tank Inlet 26 \$19 Series 96, 104, 110 Models 130TH Preset

Our proprietary software monitoring system displays a test tank being cooled by a heat exchanger designed for **90F ambient** at **125KW** load.

Despite the (intentionally) undersized heat exchanger, we are able to keep the maximum chip temperature below the critical | shutoff temperature far higher than the system design temperature; this system will outperform its design on hot days.

All miners in the test tank have maximum chip and board temperatures within 2-3 degrees of each other at all ambient temperatures, due to our well designed flow control system.


HASH	BOARD TEMP CHIP TEMP			© CHIP TEMP			BOAR	HASH		
	INLET	OUTLET	INLET	OUTLET		OUTLET	INLET	OUTLET	INLET	
135 ⊤	41 ° 40 °	50° 51°	56° 55°	65° 66°	1	64° 63°	53° 54°	49° 48°	38 : 39 :	140 1
	41 ° 40 °	51 52	56 * 55 *	66 67	2	65 ° 64 °	54 55	50 49	39 40	
	41 * 41 *	51 * 53 *	56° 56°	66 68 68	3	66° 64°	53° 54°	51° 49°	38 * 39 *	
109 T	43 * 41 *	52 * 53 *	58 * 56 *	67 68	1	64 63 63	53° 54°	49° 48°	38 * 39 *	140
	43 42 42	53 * 55 *	58 ° 57 °	68 ° 70 °	2	65 ° 64 °	54° 55°	50 49	39 40	
	43 ° 42 °	53: 54:	58: 57:	68 · 69 ·	3	66: 64:	53° 54°	51 ° 49 °	38 : 39 :	
135 T	41 * 40 *	50 * 51 *	56 * 55 *	65 66	1	66 · 65 ·	55° 56°	51: 50:	40 ° 41 °	140 1
	41 * 40 *	51 52	56 * 55 *	66 67	2	67 · 66 ·	55° 56°	52° 51°	40 : 41 :	
	41: 41:	51° 53°	56 · 56 ·	66 68	3	68 ° 66 °	56 56	53 51	41 41 41	
135 ⊤	42 * 41 *	51 52	57 * 56 *	66 · 67 ·	1	66 · 65 ·	55' 56'	51 50	40 * 41 *	140
	42 41	52 * 54 *	57 * 56 *	67 69	2	67 66	55° 56°	52° 51°	40 ° 41 °	
	42 * 42 *	52° 53°	57° 57°	67° 68°	3	68° 66°	56° 56°	53 * 51 *	41: 41:	
139 ⊤	41 : 40 :	50 : 51 :	56 : 55 :	65 66	1	66 : 65 :	55° 56°	51° 50°	40° 41°	139
	41 40	51 52	56 55	66 67	2	67 66 6	55: 56:	52 - 51 -	40 * 41 *	
	41 * 41 *	51 53	56 ° 56 °	66 ° 68 °	3	68 ° 66 °	56° 56°	53 * 51 *	41: 41:	
133 ⊤	40 : 39 :	49 : 50 :	55 54	64° 65°	1	67 · 66 ·	56° 57°	52 51	41 42	139 1
	41 40	50 51	56 55	65 66	2	69 67	56 57	54 52	41 42	
	40 * 39 *	50 * 52 *	55° 54°	65 ° 67 °	3	68° 67°	57: 57:	53 · 52 ·	42 * 42 *	
141 T	41 ° 40 °	50° 51°	56° 55°	65° 66°	1	66° 65°	55 56	51 * 50 *	40 ° 41 °	135 1
	41 40	51 52	56 55	66 67	2	67 · 66 ·	55 56	52 * 51 *	40 : 41 :	
	41 ° 41 °	51 53	56° 56°	66 · 68 ·	3	68 · 66 ·	56: 56:	53 * 51 *	41: 41:	
136 ⊤	40 : 39 :	49° 50°	55° 54°	64° 65°	1	66° 65°	55: 56:	51 * 50 *	40 * 41 *	141
	41 40	50 51	56 55	65 66	2	67 66	55 56	52 51 51	40 * 41 *	
	40 : 39 :	50 : 52 :	55 : 54 :	65 67	3	68 · 66 ·	56' 56'	53 51	41 41 41	
128 T	40 : 39 :	49 : 50 :	55° 54°	64 ° 65 °	1	66 ° 65 °	55 56	51: 50:	40 : 41 :	133 1
	41 40	50 51	56 55	65 66	2	67 66	55: 56°	52 * 51 *	40 : 41 :	
	40: 39:	50 : 52 :	55: 54:	65 : 67 :	3	68 · 66 ·	56' 56'	53 51	41 41	
137 ⊤	41 * 40 *	50 * 51 *	56 ° 55 °	65 ° 66 °	1	67 ° 66 °	56 57	52 51	41 42	140
	41 40	51 52	56 55	66 67	2	69 67	56: 57:	54 * 52 *	41: 42:	
	41 ° 41 °	51 53	56° 56°	66 · 68 ·	3	68 · 67 ·	57: 57:	53 * 52 *	42: 42:	
140 T	41: 40:	50: 51:					56: 57:	52: 51:		

Heat Exchanger Immersion Tank Performance 125KW @ 90F with a 47°C Tank Inlet 26 S19 Series 96, 104, 110 Models

140TH Preset

The energy efficiency of hashing in an immersion tank, measured in Joules / TH, varies based on the miner chip temperatures; higher chip temperatures generally mean lower efficiency (more power is required to hash at the same rate). We find that for the Antminer \$19 series, above 75°C max chip temperatures, the hash rate is consistent, but efficiency goes down as temperature goes up. Below 75°C max chip temperatures, as the temperature gets colder, efficiency increases, but you start to lose hash rate at a given preset; up to 15% of the preset hash rate at the coldest temperatures.

There is an economic decision to be made as to the benefit of increased hash rates vs lower efficiency (higher J/TH) as well as higher efficiency (lower J/TH) vs. the increased capital cost of higher cooling capacity.

One thing to keep in mind is that efficiency is not a static number and will rise and fall with ambient temperatures and seasons. The worst efficiency will only be seen on the hottest parts of the hottest days. Most systems will be able to cool to quite low temperatures during the colder months and overnight.

This fact also stresses the importance of understanding the capabilities of your immersion equipment supplier's ability to provide properly sized heat exchangers. Even poorly designed systems may run quite well during the winter months, but start to overheat as daily ambient temperatures increase.

